Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of Chest Wall Modifications and Lung Injury on the Correspondence Between Airway and Transpulmonary Driving Pressures.

OBJECTIVE: Recent interest has arisen in airway driving pressure (DP(AW)), the quotient of tidal volume (V(T)), and respiratory system compliance (C(RS)), which could serve as a direct and easily measured marker for ventilator-induced lung injury risk. We aimed to test the correspondence between DP(AW) and transpulmonary driving pressure (DP(TP))-the quotient of V(T) and lung compliance (C(L)), in response to intra-abdominal hypertension and changes in positive end-expiratory pressure during different models of lung pathology.

DESIGN: Well-controlled experimental setting that allowed reversible modification of chest wall compliance (C(CW)) in a variety of models of lung pathology.

SETTING: Large animal laboratory of a university-affiliated hospital.

SUBJECTS: Ten deeply anesthetized swine.

INTERVENTIONS: Application of intra-abdominal pressures of 0 and 20 cm H2O at positive end-expiratory pressure of 1 and 10 cm H2O, under volume-controlled mechanical ventilation in the settings of normal lungs (baseline), unilateral whole-lung atelectasis, and unilateral and bilateral lung injuries caused by saline lavage.

MEASUREMENTS AND MAIN RESULTS: Pulmonary mechanics including esophageal pressure and calculations of DP(AW), DP(TP), C(RS), C(L), and C(CW). When compared with normal intra-abdominal pressures, intra-abdominal hypertension increased DP(AW), during both "normal lung conditions" (p < 0.0001) and "unilateral atelectasis" (p = 0.0026). In contrast, DP(TP) remained virtually unaffected by changes in positive end-expiratory pressure or intra-abdominal pressures in both conditions. During unilateral lung injury, both DPA(W) and DP(TP) were increased by the presence of intra-abdominal hypertension (p < 0.0001 and p = 0.0222, respectively). During bilateral lung injury, intra-abdominal hypertension increased both DP(AW) (at positive end-expiratory pressure of 1 cm H2O, p < 0.0001; and at positive end-expiratory pressure of 10 cm H2O, p = 0.0091) and DP(TP) (at positive end-expiratory pressure of 1 cm H2O, p = 0.0510; and at positive end-expiratory pressure of 10 cm H2O, p = 0.0335).

CONCLUSIONS: Our data indicate that DP(AW) is influenced by reductions in chest wall compliance and by underlying lung properties. As with other measures of pulmonary mechanics that are based on unmodified P(AW), caution is advised in attempting to attribute hazard or safety to any specific absolute value of DP(AW).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app