Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

COX-2 inhibition impairs mechanical stimulation of early tendon healing in rats by reducing the response to microdamage.

Early tendon healing can be stimulated by mechanical loading and inhibited by cyclooxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs). Therefore, we investigated if impairment of tendon healing by a COX-2 inhibitor (parecoxib) is related to loading. Because loading might infer microdamage, which also stimulates healing, we also investigated if this effect is inhibited by parecoxib. The Achilles tendon was transected in 114 rats. Three degrees of loading were used: full loading, partial unloading, and unloading (no unloading, Botox injections in the plantar flexor muscles, or Botox in combination with tail suspension). For each loading condition, the rats received either parecoxib or saline. In a second experiment, rats were unloaded with Botox, and the tendon was subjected to microdamage by needling combined with either saline or parecoxib. Mechanical testing day 7 showed that there was a significant interaction between loading and parecoxib for peak force at failure (P < 0.01). However, logarithmic values showed no significant interaction, meaning that we could not exclude that the inhibitory effect of parecoxib was proportionate to the degree of loading. Microbleeding was common in the healing tissue, suggesting that loading caused microdamage. Needling increased peak force at failure (P < 0.01), and this effect of microdamage was almost abolished by parecoxib (P < 0.01). Taken together, this suggests that COX-2 inhibition impairs the positive effects of mechanical loading during tendon healing, mainly by reducing the response to microdamage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app