OPEN IN READ APP
JOURNAL ARTICLE

The Genetic Basis of Composite Spike Form in Barley and 'Miracle-Wheat'

Naser Poursarebani, Tina Seidensticker, Ravi Koppolu, Corinna Trautewig, Piotr Gawroński, Federica Bini, Geetha Govind, Twan Rutten, Shun Sakuma, Akemi Tagiri, Gizaw M Wolde, Helmy M Youssef, Abdulhamit Battal, Stefano Ciannamea, Tiziana Fusca, Thomas Nussbaumer, Carlo Pozzi, Andreas Börner, Udda Lundqvist, Takao Komatsuda, Silvio Salvi, Roberto Tuberosa, Cristobal Uauy, Nese Sreenivasulu, Laura Rossini, Thorsten Schnurbusch
Genetics 2015, 201 (1): 155-65
26156223
Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. 'Compositum-Barley' and tetraploid 'Miracle-Wheat' (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation 'Miracle-Wheat' produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in 'Compositum-Barley,' i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched head(t) (bh(t)) locus regulating spike branching in tetraploid 'Miracle-Wheat.' Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bh(t) locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of 'Miracle-Wheat.' mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat's yield potential.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
26156223
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"