JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In silico identification of the genes for sperm-egg interaction in the internal fertilization of the newt Cynops pyrrhogaster.

A specific sperm-egg interaction in the oviductal matrix is crucial for internal fertilization of the red-bellied newt, Cynops pyrrhogaster. An understanding of the molecular basis of this interaction is expected to elucidate the evolutionary history of internal fertilization in amphibians. Recently, deep sequencing technology has provided global gene information even in nonmodel animals, allowing us to understand specific features of the molecular mechanisms underlying fertilization in C. pyrrhogaster. In the present study, we screened de novo assembled RNAseq from ovary, testis, and oviduct samples in C. pyrrhogaster and identified the base sequences encoding zona pellucida (ZP) proteins, voltage-dependent Ca(2+) channels, and cysteine-rich secretory proteins (CRISPs), which respectively are sperm receptors for egg envelopes, major mediators of sperm intracellular signaling, and expected extracellular modulators for sperm function in the female reproductive tract. In the ovary, ZP homologues of all six subgroups were found, including a ZP1 homologue that was newly found in amphibians, a ZP4 homologue, and six ZPC homologues. The unique combination of ZP proteins suggests a new mechanism for sperm binding to egg envelopes in the internal fertilization of C. pyrrhogaster. In the testis, CaV1.1, 1.2, and 3.2, which are L- and T-type voltage-dependent Ca(2+) channels, were found as potential mediators for the internal fertilization-specific sperm-egg interaction. We also found CRISP 2 in the oviduct, which is speculated to participate in the sperm-egg interaction. These results indicate that the de novo assembled RNAseq is a powerful tool allowing analysis of the specific sperm-egg interactions in C. pyrrhogaster.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app