Add like
Add dislike
Add to saved papers

Parthenolide induces apoptosis in colitis-associated colon cancer, inhibiting NF-κB signaling.

Recently, the nuclear factor (NF)-κB inhibitor parthenolide (PT) was identified as a promising anticancer agent for the promotion of cancer cell apoptosis. Additionally, our previous study demonstrated that PT administration suppresses tumor growth in a xenograft model of colorectal cancer cells via regulation of the B-cell lymphoma-2 (Bcl-2) family. However, the role of PT in the development of colitis-associated colon cancer (CAC) is poorly understood. Therefore, the aim of the present study was to investigate the effects of PT administration on CAC using a murine model. Azoxymethane (AOM) and dextran sulfate sodium (DSS) were administered to induce experimental CAC in the following three groups of treated mice: i) AOM and DSS plus vehicle; ii) AOM, DSS and 2 mg/kg PT; and iii) AOM, DSS and 4 mg/kg PT. It was demonstrated that the histological acuteness of AOM/DSS-induced CAC was significantly reduced following the administration of PT, resulting in decreased NF-κB p65 expression levels via a blockade of phosphorylation and subsequent degradation of inhibitor of κB-α (IκBα). Furthermore, PT administration appeared to enhance the process of carcinogenesis via the downregulation of the antiapoptotic proteins Bcl-2 and Bcl-extra large, mediated by inhibition of NF-κB activation. Apoptosis and caspase-3 expression were markedly increased in the PT-treated group. These findings indicate that PT inhibits IκBα phosphorylation and NF-κB activation, resulting in the initiation of apoptosis and the eventual suppression of CAC development. The beneficial effects of PT treatment observed in the experimental CAC model indicate the potential chemopreventive and therapeutic role of PT in CAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app