Add like
Add dislike
Add to saved papers

Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app