Add like
Add dislike
Add to saved papers

Strong coupling between localized and propagating plasmon polaritons.

Optics Letters 2015 July 2
We investigate plasmon-plasmon (PP) coupling in the strongly interacting regimes by using a tunable plasmonic platform consisting of triangular Ag nanoprisms placed nanometers away from Ag thin films. The nanoprisms are colloidally synthesized using a seed-mediated growth method and having size-tunable localized surface plasmon polariton (SPP) resonances immobilized on Si(3)N(4) films. The PP coupling between the localized SPPs of metal nanoprisms and the propagating SPPs of the metal film is controlled by the nanoprism concentration and the plasmon damping in the metal film. Results reveal that Rabi splitting energy determining the strength of the coupling can reach up to several hundreds meV, thus demonstrating the ultrastrong coupling occurring between localized and propagating SPPs. The metal nanoparticle-metal thin film hybrid system over the square-centimeter areas presented here provides a unique configuration to study PP coupling all the way from the weak to ultrastrong coupling regimes in a broad range of wavelengths.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app