JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Altered trabecular bone morphology in adolescent and young adult athletes with menstrual dysfunction.

Bone 2015 December
CONTEXT: Young amenorrheic athletes (AA) have lower bone mineral density (BMD) and an increased prevalence of fracture compared with eumenorrheic athletes (EA) and non-athletes. Trabecular morphology is a determinant of skeletal strength and may contribute to fracture risk.

OBJECTIVES: To determine the variation in trabecular morphology among AA, EA, and non-athletes and to determine the association of trabecular morphology with fracture among AA.

DESIGN AND SETTING: A cross-sectional study performed at an academic clinical research center.

PARTICIPANTS: 161 girls and young women aged 14-26 years (97 AA, 32 EA, and 32 non-athletes).

MAIN OUTCOME MEASURE: We measured volumetric BMD (vBMD) and skeletal microarchitecture using high-resolution peripheral quantitative computed tomography. We evaluated trabecular morphology (plate-like vs. rod-like), orientation, and connectivity by individual trabecula segmentation.

RESULTS: At the non-weight-bearing distal radius, the groups did not differ for trabecular vBMD. However, plate-like trabecular bone volume fraction (pBV/TV) was lower in AA vs. EA (p=0.03), as were plate number (p=0.03) and connectivity (p=0.03). At the weight-bearing distal tibia, trabecular vBMD was higher in athletes vs. non-athletes (p=0.05 for AA and p=0.009 for EA vs. non-athletes, respectively). pBV/TV was higher in athletes vs. non-athletes (p=0.04 AA and p=0.005 EA vs. non-athletes), as were axially-aligned trabeculae, plate number, and connectivity. Among AA, those with a history of recurrent stress fracture had lower pBV/TV, axially-aligned trabeculae, plate number, plate thickness, and connectivity at the distal radius.

CONCLUSIONS: Trabecular morphology and alignment differ among AA, EA, and non-athletes. These differences may be associated with increased fracture risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app