Docosahexaenoic acid inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by decreasing the excitability of DRG neurons

Li-Jun Heng, Rui Qi, Rui-Hua Yang, Guo-Zheng Xu
Experimental Neurology 2015, 271: 291-300
Diabetes mellitus is a common metabolic disease in human beings with characteristic symptoms of hyperglycemia, chronic inflammation and insulin resistance. One of the most common complications of early-onset diabetes mellitus is peripheral diabetic neuropathy, which is manifested either by loss of nociception or by allodynia and hyperalgesia. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown the potential of anti-inflammation and modulating neuron excitability. The present study investigated the effects of docosahexaenoic acid (DHA) on the excitability of dorsal root ganglion (DRG) neurons in streptozotocin (STZ)-induced diabetes rats. The effects of DHA on the allodynia and hyperalgesia of diabetic rats were also evaluated. Dietary DHA supplementation effectively attenuated both allodynia and hyperalgesia induced by STZ injection. DHA supplementation decreased the excitability of DRG neurons by decreasing the sodium currents and increasing potassium currents, which may contribute to the effect of alleviating allodynia and hyperalgesia in diabetic rats. The results suggested that DHA might be useful as an adjuvant therapy for the prevention and treatment of painful diabetic neuropathy.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"