JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7.

BACKGROUND: Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells.

METHODS: Production of superoxide anion was measured by lucigenin chemiluminescence assay using whole cells and protein extracts (NADPH oxidase activity), and intracellular reactive oxygen species (ROS) by fluorescence microscopy using 2',7'-dichlorofluorescein diacetate (DCF-DA). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to measure mRNA and protein levels, respectively. siRNA transfection was used to assess involvement of genes in cancer invasion, which were identified by Matrigel transwell invasion assay. Luciferase reporter assay was performed to identify transcription factors linked to gene expression.

RESULTS: Under basal conditions, less invasive human colon cancer cells (HT29 and Caco-2) showed low MMP-7 expression but high NOX1 expression and AMPK phosphorylation. Treatment of HT29 and Caco-2 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced an invasive phenotype response along with corresponding increases in ROS production and NOX2 and MMP-7 expression as well as reduced AMPK phosphorylation, which resemble basal conditions of highly invasive human colon cancer cells (SW620 and HCT116). In addition, inverse regulation between AMPK phosphorylation and NOX2 and MMP-7 expression was observed in HT29 cells treated with different concentrations of exogenous hydrogen peroxide. TPA-induced invasive phenotype in HT29 cells was abolished by treatment with Vit. E, DPI, apocynin, and NOX2 siRNA but not NOX1 siRNA, indicating NOX2-derived ROS production induced an invasive phenotype. TPA-induced induction of MMP-7 expression was suppressed by AP-1, NF-κB, and MAPK (ERK, p38, and JNK) inhibitors, whereas TPA-induced expression of NOX2 and its regulators, p47phox and p67phox, was blocked by p38 and NF-κB inhibitors.

CONCLUSIONS: Molecular switch from NOX1 to NOX2 in colon cancer cells induces ROS production and subsequently enhances MMP-7 expression by deactivating AMPK, which otherwise inhibits stimulus-induced autoregulation of ROS and NOX2 gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app