Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: Distributions, sources and contamination assessment.

Marine Pollution Bulletin 2015 September 16
Surface sediments from the intertidal zone of the southwestern Laizhou Bay were analyzed for heavy metals to seek their concentrations, distributions, pollution status, potential ecological risks and possible sources. The concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were in the ranges of 4.65-9.65, 0.11-0.28, 25.85-42.75, 7.57-21.29, 0.022-0.054, 12.85-25.35, 9.65-17.65 and 38.22-73.81μgg(-1) dry sediment weight, respectively. Cd and Hg presented a status of no pollution to moderate pollution and moderate to considerable potential ecological risks; they were enriched to some extent at some sampling stations, while the other studied metals were not. The combined effects of the studied metals in the sediments made them have a 21% probability of being toxic to biota. The results indicated that As, Cr, Cu, Zn, Ni and Pb were mainly from natural contribution, while a significant portion of Cd and Hg was likely from anthropogenic discharges in addition to natural inputs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app