Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy

Sunhong Jun, Cheolhee Yang, Tae Wu Kim, Megumi Isaji, Hitoshi Tamiaki, Hyotcherl Ihee, Jeongho Kim
Physical Chemistry Chemical Physics: PCCP 2015 July 21, 17 (27): 17872-9
Chlorosomes are the largest light harvesting complexes in nature and consist of many bacteriochlorophyll pigments forming self-assembled J-aggregates. In this work, we use two-dimensional electronic spectroscopy (2D-ES) to investigate ultrafast dynamics of excitation energy transfer (EET) in chlorosomes and their temperature dependence. From time evolution of the measured 2D electronic spectra of chlorosomes, we directly map out the distribution of the EET rate among the manifold of exciton states in a 2D energy space. In particular, it is found that the EET rate varies gradually depending on the energies of energy-donor and energy-acceptor states. In addition, from comparative 2D-ES measurements at 77 K and room temperature, we show that the EET rate exhibits subtle dependence on both the exciton energy and temperature, demonstrating the effect of thermal excitation on the EET rate. This observation suggests that active thermal excitation at room temperature prevents the excitation trapping at low-energy states and thus promotes efficient exciton diffusion in chlorosomes at ambient temperature.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"