JOURNAL ARTICLE

microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway

Pengfei Qiao, Guodong Li, Wen Bi, Lianmeng Yang, Lei Yao, Dequan Wu
BMC Cancer 2015, 15: 469
26077733

BACKGROUND: Extrahepatic Cholangiocarcinoma (EHCC) is one of the uncommon malignancies in the digestive system which is characterized by a poor prognosis. Aberrations of miRNAs have been shown involved in the progression of this disease. In this study, we evaluated the expression and effects of miR-34a on EHCC.

METHODS: miR-34a expression levels were detected in EHCC tissues, adjacent non-tumor tissues, normal bile duct (NBD) specimens of patients and cholangiocarcinoma (CC) cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Relationships between miR-34a with clinical characteristics of EHCC patients were further analyzed. Computational search, functional luciferase assay and western blot were further used to demonstrate the downstream target of miR-34a in CC cells. Immunohistochemistry was carried on to identify the downstream target gene of miR-34a in EHCC patients. Cell morphology, invasion and migration assays were further applied to confirm the anti-carcinogenic effects of miR-34a through the downstream target.

RESULTS: miR-34a expression was significantly decreased in human EHCC tissues and CC cell lines when compared with the adjacent non-tumor tissues and normal bile duct tissues. miR-34a was found correlated with the migration and invasion in EHCC patients. Smad4 was over-expressed in most of the EHCC patients and was further demonstrated as one of the downstream targets of miR-34a, which was involved in the progression of EHCC. Moreover, activation of miR-34a suppressed invasion and migration through TGF-beta/Smad4 signaling pathway by epithelial-mesenchymal transition (EMT) in vitro.

CONCLUSIONS: Taken together, our results suggest that miR-34a inhibits invasion and migration by targeting Smad4 to suppress EMT through TGF- beta/Smad signaling pathway in human EHCC.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
26077733
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"