Add like
Add dislike
Add to saved papers

Linkage engineering in hosts for dramatic efficiency enhancement of blue phosphorescent organic light-emitting diodes.

Optics Express 2015 May 19
Higher triplet energy and balanced charge mobility is two key factors for high-efficiency host materials of phosphorescent organic light-emitting diodes (PhOLED), which are integrated in a carbazole-diphenylene-fluorene hybrid FDPCz2 (9,9'-(4',4"-(9H-fluorene-9,9-diyl)bis(biphenyl-4',4-diyl))bis(9H-carbazole)) on the basis of indirect linkage strategy. Owing to rationally spatial allocation of conjugation blocking and extension for diphenylene linkages, FDPCz2 achieves both high triplet energy of 2.97 eV and favorable charge mobility by order of 6.3 × 10(-6) cm(2) V(-1) s(-1). Compared to conventional hosts and a short-conjugated analogue FPCz2 (9,9'-(4,4'-(9H-fluorene-9,9-diyl)bis(4,1-phenylene)) bis(9H-carbazole)), FDPCz2 dramatically elevated device efficiencies with peak values of 40.6 cd A(-1) and 20.2% for blue PhOLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app