Add like
Add dislike
Add to saved papers

Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens.

The monoheme c-type cytochrome PccH from Geobacter sulfurreducens, involved in the pathway of current-consumption in biofilms, was electrochemically characterized in detail. Cyclic voltammetry was used to determine the kinetics and thermodynamics properties of PccH redox behavior. Entropy, enthalpy and Gibbs free energy changes associated with the redox center transition between the ferric and the ferrous state were determined, indicating an enhanced solvent exposure. The midpoint redox potential is considerably low for a monoheme c-type cytochrome and the heterogeneous electron transfer constant rate reflects a high efficiency of electron transfer process in PccH. The midpoint redox potential dependence on the pH (redox-Bohr effect) was investigated, over the range of 2.5 to 9.1, and is described by the protonation/deprotonation events of two distinct centers in the vicinity of the heme group with pKa values of 2.7 (pKox1); 4.1 (pKred1) and 5.9 (pKox2); 6.4 (pKred2). Based on the inspection of PccH structure, these centers were assigned to heme propionic acids P13 and P17, respectively. The observed redox-Bohr effect indicates that PccH is able to thermodynamically couple electron and proton transfer in the G. sulfurreducens physiological pH range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app