JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model.

Journal of Neurotrauma 2015 December 16
There are several widely used devices for controlled contusion of the spinal cord, including the Ohio State University device, the University of British Columbia multi-mechanisms injury device, the New York University (NYU) impactor, and the Infinite Horizon (IH) impactor. Although various devices and protocols have been used to generate consistent injury severities, further investigation of the relationship between the key parameters of different spinal cord injury (SCI) contusion devices (e.g., drop height in the NYU impactor and impact force in the IH impactor) will improve our understanding of SCI mechanisms. A three-dimensional finite element model of the rat spinal cord from T9 to T10 that included the white and gray matters, dura mater, and cerebrospinal fluid was developed to investigate the von-Mises stress, maximum principal strain, and maximum displacement of the spinal cord for the drop height in the NYU impactor and the impact force in the IH impactor. A quantitative relationship was established as a conversion equation between two key parameters--i.e., the drop height and the impact force--in the NYU and IH impactors from regression equations for peak von-Mises stress, peak maximum principal strain, and maximum displacement in the spinal cord with respect to drop height and impact force with very high coefficients of determination. The consistent correlation was represented as a simple equation (Force = (28.2 ± 3.2) · Height((0.83 ± 0.07))) under the experimental conditions of a 10-g rod in the NYU impactor and an impact velocity of 125 mm/sec in the IH impactor. Thus, the key biomechanical parameter for a contusion device can be converted or translated to that of another device to analyze experimental results from multiple contusion devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app