Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics

Dan Jackson
Research Synthesis Methods 2013, 4 (3): 220-9
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and exact, methods are an attractive alternative. Here, methodology is developed to compute exact confidence intervals for the between-study variance using generalised versions of Cochran's heterogeneity statistic. If some between-study is anticipated, but it is unclear how much, then a pragmatic approach is to use the reciprocals of the within-study standard errors as weights when computing the confidence interval.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"