Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Disruption of β-catenin binding to parathyroid hormone (PTH) receptor inhibits PTH-stimulated ERK1/2 activation.

The type I parathyroid hormone receptor (PTH1R) mediates PTH and PTH-related protein (PTHrP) actions on extracellular mineral ion homeostasis and bone remodeling. These effects depend in part on the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Sequences located within or at the carboxyl-terminus of PTH1R control its activation and trafficking. β-catenin regulates PTH1R signaling and promotes chondrocyte hypertrophy through binding to the intracellular carboxyl-terminal region of the receptor. How the interaction of PTH1R with β-catenin affects PTH-stimulated ERK1/2 is unknown. In the present study, human embryonic kidney 293 (HEK293) cells, which do not express the PTH1R, were used to investigate whether the disruption of β-catenin binding to PTH1R affects PTH-stimulated ERK1/2 activation. We demonstrated that β-catenin interacted with wild-type PTH1R but this interaction was markedly reduced with mutant PTH1R (L584A/L585A). PTH stimulated less cAMP formation and increased more intracellular calcium in HEK293 cells transfected with wild-type PTH1R compared with mutant PTH1R, indicating β-catenin switches PTH1R signaling from Gαs activation to Gαq signaling. In addition, ERK1/2 activation in HEK293 cells transfected with PTH1R exhibited time and concentration dependence. PTH-stimulated ERK1/2 activation was mostly mediated through Gαq/PLC signaling pathway. Importantly, transfection of mutant PTH1R decreased PTH-induced ERK1/2 activation by inhibiting Gαq-mediated signaling. This study shows for the first time that the interference of β-catenin binding to PTH1R inhibits PTH-stimulated ERK1/2 phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app