CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience.

OBJECT: Brainstem cavernous malformations (CMs) are challenging due to a higher symptomatic hemorrhage rate and potential morbidity associated with their resection. The authors aimed to preoperatively define the relationship of CMs to the perilesional corticospinal tracts (CSTs) by obtaining qualitative and quantitative data using high-definition fiber tractography. These data were examined postoperatively by using longitudinal scans and in relation to patients' symptomatology. The extent of involvement of the CST was further evaluated longitudinally using the automated "diffusion connectometry" analysis.

METHODS: Fiber tractography was performed with DSI Studio using a quantitative anisotropy (QA)-based generalized deterministic tracking algorithm. Qualitatively, CST was classified as being "disrupted" and/or "displaced." Quantitative analysis involved obtaining mean QA values for the CST and its perilesional and nonperilesional segments. The contralateral CST was used for comparison. Diffusion connectometry analysis included comparison of patients' data with a template from 90 normal subjects.

RESULTS: Three patients (mean age 22 years) with symptomatic pontomesencephalic hemorrhagic CMs and varying degrees of hemiparesis were identified. The mean follow-up period was 37.3 months. Qualitatively, CST was partially disrupted and displaced in all. Direction of the displacement was different in each case and progressively improved corresponding with the patient's neurological status. No patient experienced neurological decline related to the resection. The perilesional mean QA percentage decreases supported tract disruption and decreased further over the follow-up period (Case 1, 26%-49%; Case 2, 35%-66%; and Case 3, 63%-78%). Diffusion connectometry demonstrated rostrocaudal involvement of the CST consistent with the quantitative data.

CONCLUSIONS: Hemorrhagic brainstem CMs can disrupt and displace perilesional white matter tracts with the latter occurring in unpredictable directions. This requires the use of tractography to accurately define their orientation to optimize surgical entry point, minimize morbidity, and enhance neurological outcomes. Observed anisotropy decreases in the perilesional segments are consistent with neural injury following hemorrhagic insults. A model using these values in different CST segments can be used to longitudinally monitor its craniocaudal integrity. Diffusion connectometry is a complementary approach providing longitudinal information on the rostrocaudal involvement of the CST.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app