JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Loss and Gain of Tolerance to Pancreatic Glycoprotein 2 in Celiac Disease.

BACKGROUND: Autoantibodies against pancreatic secretory-granule membrane glycoprotein 2 (GP2) have been demonstrated in patients with Crohn's disease but recently also with celiac disease (CD). Both entities are characterized by intestinal barrier impairment with increased gut permeability. Pathophysiological hallmark of CD is a permanent loss of tolerance to alimentary gliadin and a transient loss of tolerance to the autoantigen human tissue transglutaminase (tTG). Therefore, we explored the behavior of loss of tolerance to GP2 reported in CD.

METHODS: We assessed prevalences and levels of autoantibodies against GP2, CD-specific antibodies to endomysial antigens and tTG as well as Crohn's disease-specific anti-Saccharomyces cerevisiae antibodies in sera of 174 patients with active CD, 84 patients under gluten-free diet (GFD) and 129 controls. Furthermore, we looked for an association between anti-GP2 antibody positivity and degree of mucosal damage in CD.

RESULTS: We found significantly elevated anti-GP2 IgA positivity in active CD patients (19.5%) compared to CD patients under GFD (0.0%) and controls (5.4%, p < 0.001, respectively). Anti-GP2 IgA levels correlated significantly with CD-specific antibodies (p < 0.001). Anti-GP2 autoantibody positivity disappeared under GFD similarly to CD-specific autoantibodies against tTG and endomysial antigens. For the first time, IgA antibody levels to GP2 are demonstrated to be associated with degree of villous atrophy according to Marsh classification.

CONCLUSIONS: Anti-GP2 IgA seems to be associated with disease activity in a distinct subgroup of patients with CD. The observed loss of tolerance to GP2 in a subset of patients with CD is transient and disappears under GFD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app