Add like
Add dislike
Add to saved papers

MicroRNA-196a overexpression promotes cell proliferation and inhibits cell apoptosis through PTEN/Akt/FOXO1 pathway.

MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. MiR-196a has been reported to take part in tumorigenic progression of osteosarcoma (OS). However, the effects of miR-196a on OS are still unclear. The objective of this study is to investigate the molecular mechanism of miR-196a in osteosarcoma cells. In the present study, the expression of miR-196a in OS cell lines was detected by real-time PCR. We found that the expression level of miR-196a was markedly up-regulated in osteosarcoma cell lines compared with normal osteoblastic cells. Then, the miR-196a mimic was transiently transfected into MG63 and U2OS cells using Lipofectamine™ 2000 reagent. Subsequently, the MTT and Brdu-ELISA results showed that up-regulation of miR-196a promoted the cell viability and proliferation. Our results also showed that miR-196a mimic accelerated cell cycle progression of MG63 and U2OS cells by down regulation of p21 and p27, and upregulation of cyclin D1. In addition, overexpression of miR-196a suppressed apoptosis of MG63 and U2OS cells due to increasing BCL2L2 and MCL-1 expressions, and then inactivating caspase-3. Eventually, the effect of miR-196a mimic on the PTEN/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was explored by Western blot. From our results, transfection of miR-196a decreased the expression of PTEN and increased the phosphorylation of PI3K and Akt. Taken together, miR-196a should be an oncogene in osteosarcoma. The possible mechanism was that overexpression of miR-196a promoted proliferation of MG63 and U2OS cells by modulating the PTEN/PI3K/Akt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app