JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interference with HMGB1 increases the sensitivity to chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and inducing cell apoptosis.

Non-small cell lung cancer is commonly seen with higher morbidity and mortality. High-mobility group protein 1 (HMGB1) is a highly conserved nuclear protein, which is involved in multiple human diseases including cancers. However, the mechanisms of HMGB1 in non-small cell lung cancer remain unclear. The goal of the present study is to identify the relationship between HMGB1 and the progresssion of non-small cell lung cancer and investigate the molecular mechanism of HMGB1 in non-small lung cancer cell lines. Firstly, we detected the expression levels of HMGB1 by by real-time PCR and western blotting analysis, and the results demonstrated that HMGB1 was much higher expressed in non-small cell lung cancer cell lines, including A549, SPC-1-1, NCI-2170, SK-MES-1, and NCI-H1299, compared with that of WI-38. Next, 5 μM of adriamycin (AMD), 20 μM of cisplatin (DDP), and 50 μM of methotrexate (MTX) were used to treat A549 cells and SPC-A-1 cells for 48 h. The results showed that treatment with chemotherapy drugs significantly increased the levels of HMGB1 in A549 cells and SPC-A-1 cells. Moreover, the expression levels of HMGB1 increased in a time-dependent manner being treated with DDP. Then, the endogenous HMGB1 expression was successfully interferred with shRNA specific to HMGB1 in A549 and SPC-A-1 cells, which was detected by western blotting analysis. Then, the cisplatin-sensitive A549 cells and cisplatin-resistant A549/DDP cells were treated with increasing concentrations of cisplatin for 24, 48, and 72 h; cell viability were analyzed by MTT assay; and IC50 values were calculated. The results demonstrated that the expression level of HMGB1 in A549/DDP cells was much higher than that of A549 cells; moreover, transfection with HMGB1 shRNA in A549/DDP cells decreased the IC50 value of cisplatin in A549/DDP cells. The expression levels of autophagy-related proteins beclin-1 and LC3-II were significantly higher in A549/DDP cells or the A549 cells treated with chemotherapeutic drugs, compared with that in A549 cells. However, interference with endogenous HMGB1 obviously suppressed autophagy-related proteins and increased cell apoptosis rate and the expression of cleaved caspase-3 in A549/DDP cells. All of the data suggested that interference with the endogenous HMGB1 significantly inhibited cell autophagy and increased cell apoptosis of A549/DDP cells. Thus, the study on the resistance of chemotherapy drugs would provide a theoretical reference for clinical treatment of non-small cell lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app