Add like
Add dislike
Add to saved papers

Distribution patterns of carbohydrates in murine glycocalyx.

Enterocytes are unique cells governing an array of processes. They are covered by the gut glycocalyx, which is an extraneous carbohydrate-rich coat and an integral part of the plasma membrane. The intestinal glycocalyx and secreted mucins constitute a glycosylated milieu which has a number of physiological and protective functions. One of the important functions of the glycocalyx is its barrier function against microbial adherence to different membrane glycolipids. Thus, the glycocalyx is an important part of the mucosal immune system in newborns. The aim of our study was to identify the carbohydrates in the small bowel glycocalyx of Balb/c mice at different ages. We used plant lectins with different sugar specificities. Fluorescein-labelled lectins binding different carbohydrate moieties were detected using confocal laser scanning microscopy. Biotinilated lectins were used for transmission electron microscopy observations of the constituents of the gut glycocalyx at different periods of postnatal development in mice. Different carbohydrate moieties that were identified in the murine intestinal glycocalyx followed different distribution patterns and characteristics. Carbohydrates present on the mucus surface depended on tissue localization, cell type and stage of development. The distribution and mucins glycosylation could be of interest in analysing the response of the mucosal barrier to intestinal pathogens causing infection or inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app