Add like
Add dislike
Add to saved papers

miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2.

MicroRNAs play critical roles in the development and progression of human cancers. Although it has been reported that miR-106a* is downregulated in follicular lymphoma, its role in renal cell carcinoma (RCC) remains unknown. This study investigated the expression and role of miR-106a* in human RCC. Our results showed that the miR-106a* expression decreased dramatically in clinical RCC tissues and cell lines. In vitro, overexpression of miR-106a* suppressed RCC cell proliferation and S/G2 transition, whereas inhibition of miR-106a* promoted cell proliferation and S/G2 transition. It was also found that miR-106a* expression was inversely correlated with the expression of insulin receptor substrate 2 (IRS-2). IRS-2 was determined to be a direct target of miR-106a* by a luciferase reporter assay. Importantly, silencing IRS-2 resulted in the same biologic effects as those of miR-106a* overexpression in RCC cells, including inhibition of RCC cell proliferation and triggering of S/G2 cell cycle arrest with inhibition of the PI3K/Akt signaling pathway. These results indicate that miR-106a* affects RCC progression by targeting IRS-2 with suppression of the PI3K/Akt signaling pathway in RCC cells. The findings suggest miR-106a* as a novel strategy for RCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app