JOURNAL ARTICLE

Prediction of excess weight loss after laparoscopic Roux-en-Y gastric bypass: data from an artificial neural network

Eric S Wise, Kyle M Hocking, Stephen M Kavic
Surgical Endoscopy 2016, 30 (2): 480-8
26017908

INTRODUCTION: Laparoscopic Roux-en-Y gastric bypass (LRYGB) has become the gold standard for surgical weight loss. The success of LRYGB may be measured by excess body mass index loss (%EBMIL) over 25 kg/m(2), which is partially determined by multiple patient factors. In this study, artificial neural network (ANN) modeling was used to derive a reasonable estimate of expected postoperative weight loss using only known preoperative patient variables. Additionally, ANN modeling allowed for the discriminant prediction of achievement of benchmark 50% EBMIL at 1 year postoperatively.

METHODS: Six hundred and forty-seven LRYGB included patients were retrospectively reviewed for preoperative factors independently associated with EBMIL at 180 and 365 days postoperatively (EBMIL180 and EBMIL365, respectively). Previously validated factors were selectively analyzed, including age; race; gender; preoperative BMI (BMI0); hemoglobin; and diagnoses of hypertension (HTN), diabetes mellitus (DM), and depression or anxiety disorder. Variables significant upon multivariate analysis (P < .05) were modeled by "traditional" multiple linear regression and an ANN, to predict %EBMIL180 and %EBMIL365.

RESULTS: The mean EBMIL180 and EBMIL365 were 56.4 ± 16.5 % and 73.5 ± 21.5%, corresponding to total body weight losses of 25.7 ± 5.9% and 33.6 ± 8.0%, respectively. Upon multivariate analysis, independent factors associated with EBMIL180 included black race (B = -6.3%, P < .001), BMI0 (B = -1.1%/unit BMI, P < .001), and DM (B = -3.2%, P < .004). For EBMIL365, independently associated factors were female gender (B = 6.4%, P < .001), black race (B = -6.7%, P < .001), BMI0 (B = -1.2%/unit BMI, P < .001), HTN (B = -3.7%, P = .03), and DM (B = -6.0%, P < .001). Pearson r(2) values for the multiple linear regression and ANN models were 0.38 (EBMIL180) and 0.35 (EBMIL365), and 0.42 (EBMIL180) and 0.38 (EBMIL365), respectively. ANN prediction of benchmark 50% EBMIL at 365 days generated an area under the curve of 0.78 ± 0.03 in the training set (n = 518) and 0.83 ± 0.04 (n = 129) in the validation set.

CONCLUSIONS: Available at https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR, this or other ANN models may be used to provide an optimized estimate of postoperative EBMIL following LRYGB.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
26017908
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"