Add like
Add dislike
Add to saved papers

A fishing trip to cure arrhythmogenic cardiomyopathy?

The paper entitled "Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy", as published in 2014 in Science Translational Medicine, examined the effects of the newly discovered drug SB216763 (SB21) on arrhythmogenic cardiomyopathy (ACM). In this paper, the authors focused on mechanisms underlying ACM and the accompanying molecular and cellular alterations. Most importantly they showed that SB21 was able to rescue and partly reverse the ACM phenotype in three different experimental models: (I) a zebrafish model of Naxos disease induced by the overexpression of the 2057del2 mutation in plakoglobin (PKG); (II) neonatal rat cardiomyocytes overexpressing the same mutation in PKG; (III) cardiomyocytes derived from induced pluripotent stem cells expressing two different forms of mutations in plakophilin-2. This editorial will focus on the potency and possible restrictions concerning SB21 treatment as a potential intervention for ACM and the usefulness of the applied zebrafish models in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app