Add like
Add dislike
Add to saved papers

North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget.

The terrestrial ecosystems of North America have been identified as a sink of atmospheric CO2 though there is no consensus on the magnitude. However, the emissions of non-CO2 greenhouse gases (CH4 and N2O) may offset or even overturn the climate cooling effect induced by the CO2 sink. Using a coupled biogeochemical model, in this study, we have estimated the combined global warming potentials (GWP) of CO2, CH4 and N2O fluxes in North American terrestrial ecosystems and quantified the relative contributions of environmental factors to the GWP changes during 1979-2010. The uncertainty range for contemporary global warming potential has been quantified by synthesizing the existing estimates from inventory, forward modeling, and inverse modeling approaches. Our "best estimate" of net GWP for CO2, CH4 and N2O fluxes was -0.50 ± 0.27 Pg CO2 eq/year (1 Pg = 10(15) g) in North American terrestrial ecosystems during 2001-2010. The emissions of CH4 and N2O from terrestrial ecosystems had offset about two thirds (73 %±14 %) of the land CO2 sink in the North American continent, showing large differences across the three countries, with offset ratios of 57 % ± 8 % in US, 83 % ± 17 % in Canada and 329 % ± 119 % in Mexico. Climate change and elevated tropospheric ozone concentration have contributed the most to GWP increase, while elevated atmospheric CO2 concentration have contributed the most to GWP reduction. Extreme drought events over certain periods could result in a positive GWP. By integrating the existing estimates, we have found a wide range of uncertainty for the combined GWP. From both climate change science and policy perspectives, it is necessary to integrate ground and satellite observations with models for a more accurate accounting of these three greenhouse gases in North America.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app