CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exome sequencing reveals novel SPG11 mutation in hereditary spastic paraplegia with complicated phenotypes.

We used a combined approach of whole-exome sequencing and candidate mutation validation to identify the disease-causing gene in a hereditary spastic paraplegia (HSP) patient with lower motor neuron involvement, mild cerebellar signs and dysgenesis of the corpus callosum. HSP is a clinically and genetically heterogeneous neurodegenerative disorder characterized by degeneration of the corticospinal tract motor neurons and resulting in progressive lower limb spasticity, often with a complicated phenotype. We identified novel compound heterozygous mutations in the SPG11 gene in this patient as follows: a mutation in exon 32, c.6194C > G transition (p.S2056X) and a novel c.5121+1C > T splicing mutation. Our finding suggests that these novel compound heterozygous mutations in SPG11 are associated with HSP and lower motor neuron involvement, mild cerebellar signs and dysgenesis of the corpus callosum. This study also demonstrates that exome sequencing is an efficient and rapid diagnostic tool for identifying the causes of some complex and genetically heterogeneous neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app