Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-218 inhibits the proliferation and metastasis of esophageal squamous cell carcinoma cells by targeting BMI1.

MicroRNAs (miRNAs or miRs) play a pivotal role in esophageal carcinogenesis either as oncogenes or as tumor suppressor genes. In the present study, we found that the expression level of miR-218 was significantly reduced in esophageal squamous cell carcinoma (ESCC) tissues and ESCC cell lines. Moreover, its expression was found to correlate with the clinicopathological stage of ESCC; miR-218 expression was lower in the stage III tissue samples than in the stage I and II tissue samples. Furthermore, the decreased expression of miR-218 was found to be associated with an enhanced ESCC cell proliferation and metastasis. Western blot analysis and luciferase reporter assay revealed that miR-218 decreased BMI1 expression by binding to the putative binding sites in its 3'-untranslated region (3'-UTR). The BMI1 mRNA expression levels were markedly increased and negatively correlated with the miR-218 expression level in the ESCC tissues. Functional analyses revealed that the restoration of miR-218 expression inhibited ESCC cell proliferation, migration and invasion and promoted apoptosis. The knockdown of BMI1 by siRNA showed the same phenocopy as the effect of miR-218 on ESCC cells, indicating that BMI1 was a major target of miR-218. In the present study, our findings confirm miR-218 as a tumor suppressor and identify BMI1 as a novel target of miR-218 in ESCC. Therefore, miR-218 may prove to be a useful biomarker for monitoring the initiation and development of ESCC, and may thus be an effective therapeutic target in ESCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app