Add like
Add dislike
Add to saved papers

Blast Induced Neurotrauma Leads To Changes In The Epigenome.

Blast induced neurotrauma (BINT) leads to widespread aberrant gene expression and molecular changes resulting in cognitive impairment. Enzymes such as HDAC2, HDAC6, SIRT1, DNMT1, DNMT3a and DNMT3b control histone acetylation and DNA methylation which play a major role in regulation of the transcriptome. Changes in the expression of these enzymes have been implicated in the pathology of traumatic brain injury (TBI) and Alzheimer’s disease (AD). We hypothesize that blast exposure will lead to changes in the expression of these enzymes which play a key role in injury progression and pathology. This study looked to identify epigenome changes in the acute stages of BINT using an established rodent model. Real time polymerase chain reaction and Western blot analyses were used to assess gene expression and protein level changes compared to sham. No significant changes were seen 24 hours after blast exposure. However, several changes were observed at 72 hours following blast exposure. There was a significant increase in expression of HDAC2 and HDAC6 in the hippocampus which correlated with elevated HDAC2 protein levels. SIRT1, DNMT3a and DNMT3b levels were all reduced in the hippocampus. In the medial prefrontal cortex, DNMT1 and DNMT3b were significantly reduced. The results indicated that blast exposure causes acute changes in gene expression and protein levels of epigenetic markers which correlate with changes observed in AD pathology. These epigenomic changes could provide novel targets for therapeutic interventions following BINT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app