JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of Melatonin Receptors Reduces Relapse-Like Alcohol Consumption.

Melatonin is an endogenous synchronizer of biological rhythms and a modulator of physiological functions and behaviors of all mammals. Reduced levels of melatonin and a delay of its nocturnal peak concentration have been found in alcohol-dependent patients and rats. Here we investigated whether the melatonergic system is a novel target to treat alcohol addiction. Male Wistar rats were subjected to long-term voluntary alcohol consumption with repeated abstinence phases. Circadian drinking rhythmicity and patterns were registered with high temporal resolution by a drinkometer system and analyzed by Fourier analysis. We examined potential antirelapse effect of the novel antidepressant drug agomelatine. Given that agomelatine is a potent MT1 and MT2 receptor agonist and a 5-HT2C antagonist we also tested the effects of melatonin itself and the 5-HT2C antagonist SB242084. All drugs reduced relapse-like drinking. Agomelatine and melatonin administered at the end of the light phase led to very similar changes on all measures of the post-abstinence drinking behavior, suggesting that effects of agomelatine on relapse-like behavior are mostly driven by its melatonergic activity. Both drugs caused a clear phase advance in the diurnal drinking pattern when compared with the control vehicle-treated group and a reduced frequency of approaches to alcohol bottles. Melatonin given at the onset of the light phase had no effect on the circadian phase and very small effects on alcohol consumption. We conclude that targeting the melatonergic system in alcohol-dependent individuals can induce a circadian phase advance, which may restore normal sleep architecture and reduce relapse behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app