JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Histone demethylation maintains Prdm14 and Tsix expression and represses xIst in embryonic stem cells.

Epigenetic reprogramming is exemplified by the remarkable changes observed in cellular differentiation and X-chromosome inactivation (XCI) in mammalian female cells. Histone 3 lysine 27 trimethylation (H3K27me3) is a modification that suppresses gene expression in multiple contexts including embryonic stem cells (ESCs) and decorates the entire inactive X-chromosome. The conversion of female somatic cells to induced pluripotency is accompanied by X-chromosome reactivation (XCR) and H3K27me3 erasure. Here, we show that the H3K27-specific demethylase Utx regulates the expression of the master regulators for XCI and XCR: Prdm14, Tsix, and Xist. Female ESC transcriptome analysis using a small molecule inhibitor for H3K27 demethylases, GSK-J4, identifies novel targets of H3K27 demethylation. Consistent with a recent report that GSK-J4 can inhibit other histone demethylase, we found that elevated H3K4me3 levels are associated with increased gene expression including Xist. Our data suggest multiple regulatory mechanisms for XCI via histone demethylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app