Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DPP-4 inhibition with linagliptin ameliorates cognitive impairment and brain atrophy induced by transient cerebral ischemia in type 2 diabetic mice.

BACKGROUND: It is unclear whether dipeptidylpeptidase-4 (DPP-4) inhibition can counteract the impairment of cognitive function and brain injury caused by transient cerebral ischemia in type 2 diabetes. The present study was undertaken to test our hypothesis that linagliptin, a DPP-4 inhibitor, administration following transient cerebral ischemia can ameliorate cognitive impairment and brain injury in diabetic mice.

METHODS: db/db mice, a model of obese type 2 diabetes, were subjected to transient cerebral ischemia by 17 min of bilateral common carotid artery occlusion (BCCAO), and were administered (1) vehicle or (2) linagliptin for 8 weeks or 1 week. For the long-term experiment on 8 weeks of linagliptin treatment, cognitive function, and volume and neuronal cell number of hippocampus and cortex were estimated in each group of mice. For the short-term experiment on 1 week of linagliptin treatment, cerebral IgG extravasation, Iba-1 positive cell number (reactive microglia), oxidative stress, and claudin-5 and gp91phox protein levels were measured in each group of mice.

RESULTS: Linagliptin administration almost completely suppressed the circulating DPP-4 activity in db/db mice, but did not significantly reduce blood glucose or ameliorate glucose intolerance in db/db mice. Linagliptin administration following transient cerebral ischemia significantly counteracted cognitive impairment in diabetic mice, as estimated by water maze test and passive avoidance test. Linagliptin administration ameliorated the decrease in cerebral volume and neuronal cell number in hippocampus and cortex of diabetic mice. Linagliptin administration significantly reduced the increase in cerebral IgG extravasation and the increase in reactive microglia caused by transient cerebral ischemia in diabetic mice. Furthermore, linagliptin significantly suppressed the increase in cerebral oxidative stress in transient cerebral ischemia-subjected diabetic mice. Furthermore, linagliptin significantly increased cerebral claudin-5 and significantly decreased gp91phox in diabetic mice subjected to transient cerebral ischemia.

CONCLUSIONS: DPP-4 inhibition with linagliptin counteracted cognitive impairment and brain atrophy induced by transient cerebral ischemia in diabetic mice, independently of blood glucose lowering effect. This cerebroprotective effect of linagliptin was associated with the suppression of blood-brain barrier disruption and the attenuation of cerebral oxidative stress. Thus, our present work highlights DPP-4 inhibition as a promising therapeutic strategy for cognitive impairment and cerebral vascular complications in type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app