Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of the interaction of FTO protein with thioglycolic acid capped CdTe quantum dots and its analytical application.

CdTe quantum dots (QDs) were synthesized in aqueous solution using thioglycolic acid (TGA) as stabilizing agents. The interaction between TGA-CdTe QDs and fat mass and obesity-associated (FTO) protein was investigated by fluorescence, UV-visible absorption, synchronous fluorescence and three-dimensional fluorescence spectroscopy. Results revealed that TGA-CdTe QDs could strongly quench the intrinsic fluorescence of FTO protein with a static quenching procedure. Both the van der Waals and hydrogen bonding played a major role in stabilizing the complex. The binding constant and thermodynamic parameters at different temperatures were obtained. In addition, we found that the fluorescence intensity of QDs was significantly enhanced by the addition of FTO protein. Based on this, a sensitive method for detecting FTO protein was obtained in the linear range of 5.52×10(-9)-6.62×10(-7) mol L(-1) with the detection limit of 1.14×10(-9) mol L(-1). The influences of factors on the interaction between FTO protein and TGA-CdTe QDs were studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app