Compstatin analog Cp40 inhibits complement dysregulation in vitro in C3 glomerulopathy

Yuzhou Zhang, Dingwu Shao, Daniel Ricklin, Brieanna M Hilkin, Carla M Nester, John D Lambris, Richard J H Smith
Immunobiology 2015, 220 (8): 993-8
C3 glomerulopathy (C3G) defines a group of untreatable ultra-rare renal diseases caused by uncontrolled activation of the alternative complement pathway. Nearly half of patients progress to end stage renal failure within 10 years. Cp40, a second-generation compstatin analog in clinical development, is a 14 amino-acid cyclic peptide that selectively inhibits complement activation in humans and non-human primates by binding to C3 and C3b. We hypothesized that by targeting C3 Cp40 would provide an effective treatment for C3G. By investigating its effects in vitro using multiple assays of complement activity, we show that Cp40 prevents complement-mediated lysis of sheep erythrocytes in sera from C3G patients, prevents complement dysregulation in the presence of patient-derived autoantibodies to the C3 and C5 convertases, and prevents complement dysregulation associated with disease-causing genetic mutations. In aggregate, these data suggest that Cp40 may offer a novel and promising therapeutic option to C3G patients as a disease-specific, targeted therapy. As such, Cp40 could represent a major advance in the treatment of this disease.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"