JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II.

Novel CuFe2O4@C3N4 core-shell photocatalysts were fabricated through a self-assembly method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, transmission electron microscopy and Uv-vis diffuse reflection spectroscopy. The photocatalytic performances of the CuFe2O4@C3N4 catalysts were evaluated in photo Fenton-like discoloration of Orange II dye using H2O2 as an oxidant under visible-light irradiation (λ>420 nm). It was found the CuFe2O4@C3N4 hybrid (mass ratio of CuFe2O4/g-C3N4 at 2:1) exhibits a superior activity as compared with single component of CuFe2O4 or g-C3N4 and the mixture of g-C3N4 and CuFe2O4, due to the elevation of the separation efficiency of photoinduced electron-hole pairs, resulted from the heterojunction between the interfaces of g-C3N4 and CuFe2O4. The quenching tests of different scavengers displayed that O2(•-), OH and h(+) are responsible for the Orange II decolorization. In addition, the effects of initial concentration of the dye contaminant (0.014-0.140 mM), different anions (Cl(-), SO4(2-), NO3(-), CH3COO(-) and HCO3(-)) and temperature (15-65 °C) in photoreaction were also investigated. The CuFe2O4@C3N4 sample exhibited stable performance without obvious loss of catalytic activity after five successive runs, showing a promising application for the photo-oxidative degradation of environmental contaminants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app