JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice.

A novel cyclase-like gene family (CYL) encodes proteins containing cyclase domain, but their functions are largely unknown. We report the systematic identification and characterization of CYL genes in the rice genome. Five putative CYL protein sequences (OsCYL1 to 4b) were identified. These sequences and other CYL homologs were classified into four subgroups based on phylogenetic analysis. Distinct diversification of these CYL proteins exists between plants and non-plants. The CYL family has conserved exon-intron structures, and the organizations of putative motifs in plants are specifically diverse. All OsCYL genes were expressed in a wide range of tissues or organs and were responsive to at least one of the abiotic stresses and hormone treatments applied. Protein OsCYL4a is targeted to the cell membrane. The overexpression of one stress-responsive gene OsCYL4a in rice resulted in decreased tolerance to salt, drought, cold, and oxidative stress. The expression levels of some abiotic stress-responsive factors, including H2O2-accumulating negative factors DST and OsSKIPa in OsCYL4a-overexpressing plants, were reduced compared with the wild type under normal condition and drought stress. These results suggest that rice CYL family may be functionally conserved polyketide cyclase, resulting in the rapid accumulation of reactive oxygen species to decrease tolerance to abiotic stresses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app