JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation.

The objective of this research is to develop a cost-effective carbonaceous CO2 sorbent. Highly nanoporous N-doped carbons were synthesized with coconut shell by combining ammoxidation with KOH activation. The resultant carbons have characteristics of highly developed porosities and large nitrogen loadings. The prepared carbons exhibit high CO2 adsorption capacities of 3.44-4.26 and 4.77-6.52 mmol/g at 25 and 0 °C under atmospheric pressure, respectively. Specifically, the sample NC-650-1 prepared under very mild conditions (650 °C and KOH/precursor ratio of 1) shows the CO2 uptake 4.26 mmol/g at 25 °C, which is among the best of the known nitrogen-doped porous carbons. The high CO2 capture capacity of the sorbent can be attributed to its high microporosity and nitrogen content. In addition, the CO2/N2 selectivity of the sorbent is as high as 29, higher than that of many reported CO2 sorbents. Finally, this N-doped carbon exhibits CO2 heats of adsorption as high as 42 kJ/mol. The multiple advantages of these cost-effective coconut shell-based carbons demonstrate that they are excellent candidates for CO2 capture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app