Add like
Add dislike
Add to saved papers

Phenothiazine decorated carbazoles: effect of substitution pattern on the optical and electroluminescent characteristics.

A series of thienylphenothiazine decorated carbazoles were synthesized and characterized by optical, electrochemical, thermal, and theoretical investigations. Absorption spectra of the compounds are influenced by the substitution pattern and chromophore number density. Compounds containing 2,7-substitution exhibited red-shifted absorption, while the chromophore loading on the other positions led to the increment in molar extinction coefficients due to the increase in the chromophore density. Multiple substitutions resulted in twisting of chromophores and affected the conjugative delocalization of the π-electrons, which produced shorter wavelength absorption for the 2,3,6,7-tetrasubstituted derivative. Interestingly, the compounds exhibited excited-state solvatochromism attributable to the structural reorganization-induced electronic perturbations. The solvatochromic data are supportive of a general solvent effect, which is further confirmed by Lippert-Mataga correlation. End-capping with butterfly shaped phenothiazine restrained the formation of molecular aggregates in the solid state. All of the compounds displayed exceptional thermal stability attributable to the rigid carbazole building block. Solution processed OLED fabricated using the new materials as emitting dopants in 4,4'-bis(9H-carbazol-9-yl)biphenyl host exhibited bluish green electroluminescence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app