Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Diagnostic Abilities of Variable and Enhanced Corneal Compensation Algorithms of GDx in Different Severities of Glaucoma.

Journal of Glaucoma 2016 Februrary
PURPOSE: To compare the abilities of retinal nerve fiber layer (RNFL) parameters of variable corneal compensation (VCC) and enhanced corneal compensation (ECC) algorithms of scanning laser polarimetry (GDx) in detecting various severities of glaucoma.

METHODS: Two hundred and eighty-five eyes of 194 subjects from the Longitudinal Glaucoma Evaluation Study who underwent GDx VCC and ECC imaging were evaluated. Abilities of RNFL parameters of GDx VCC and ECC to diagnose glaucoma were compared using area under receiver operating characteristic curves (AUC), sensitivities at fixed specificities, and likelihood ratios.

RESULTS: After excluding 5 eyes that failed to satisfy manufacturer-recommended quality parameters with ECC and 68 with VCC, 56 eyes of 41 normal subjects and 161 eyes of 121 glaucoma patients [36 eyes with preperimetric glaucoma, 52 eyes with early (MD>-6 dB), 34 with moderate (MD between -6 and -12 dB), and 39 with severe glaucoma (MD<-12 dB)] were included for the analysis. Inferior RNFL, average RNFL, and nerve fiber indicator parameters showed the best AUCs and sensitivities both with GDx VCC and ECC in diagnosing all severities of glaucoma. AUCs and sensitivities of all RNFL parameters were comparable between the VCC and ECC algorithms (P>0.20 for all comparisons). Likelihood ratios associated with the diagnostic categorization of RNFL parameters were comparable between the VCC and ECC algorithms.

CONCLUSION: In scans satisfying the manufacturer-recommended quality parameters, which were significantly greater with ECC than VCC algorithm, diagnostic abilities of GDx ECC and VCC in glaucoma were similar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app