JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals.

Oncotarget 2015 May 21
High fat dietary intake may increase the risk of prostate cancer (PCa). Pre-adipocytes, one of the basic components in the tumor microenvironment (TME), are capable of differentiating into adipose tissues and play key roles to affect PCa progression. Here we found the pre-adipocytes could be recruited more easily to PCa than its surrounding normal prostate tissue. In vitro co-culture system also confirmed PCa has a better capacity than normal prostate to recruit pre-adipocytes. The consequences of recruiting more pre-adipocytes may then increase PCa cell invasion. Mechanism dissection revealed infiltrating pre-adipocytes might function through down-regulation of the androgen receptor (AR) via modulation of miR-301a, and then increase PCa cell invasion via induction of TGF-β1/Smad/MMP9 signals. The mouse model with orthotopically xenografted PCa CWR22Rv1 cells with pre-adipocytes also confirmed that infiltrating pre-adipocytes could increase PCa cell invasion via suppressing AR signaling. Together, our results reveal a new mechanism showing pre-adipocytes in the prostate TME can be recruited to PCa to increase PCa metastasis via modulation of the miR-301a/AR/TGF-β1/Smad/MMP9 signals. Targeting this newly identified signaling may help us to better inhibit PCa metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app