JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fabrication and electroluminescence properties of white organic light-emitting diode with a new yellow fluorescent dopant.

A new yellow fluorescent material, (2Z)-3-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2'-yl]-2-phenylacrylonitrile (BDAT-P), have been synthesized for use in organic light-emitting diodes. Opto-electronic properties of device with the structure of ITO (180 nm)/NPB (50 nm)/MADN:PFVtPh (SYB-41) 8% (17 nm)/CBP (5 nm)/CBP:Ir(pq)2acac 8% (3 nm)/CBP (5 nm)/MADN:BDAT-P 8% (3 nm)/CBP (5 nm)/MADN:SYB-41 8% (17 nm)/TPBi (40 nm)/Liq (2 nm)/Al (100 nm) was measured and revealed that BDAT-P was sufficiently applicable as a dopant of one of emitting layers in white light-emitting diodes. Maximum luminance of device was measured to be 26,950 cd/m2. Maximum luminous and quantum efficiency were observed to be 14.22 cd/A and 6.58%, respectively. The device emitted warm white light corresponding to Commission Internationale de l'Eclairage (CIExy) coordinates of (0.372, 0.424) at 11 V, (0.375,0.417) at 12 V, (0.372,0.409) at 13 V, (0.366, 0.401) at 14 V, and (0.360, 0.393) at 15 V, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app