JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app