Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway.

Biomaterials 2015 July
Human urine-derived stem cells (USCs) have great application potential for cytotherapy as they can be obtained by non-invasive and simple methods. Silicate bioceramics, including calcium silicate (CS), can stimulate osteogenic differentiation of stem cells. However, the effects of silicate bioceramics on osteogenic differentiation of USCs have not been reported. In this study, at first, we investigated the effects of CS ion extracts on proliferation and osteogenic differentiation of USCs, as well as the related mechanism. CS particles were incorporated into poly (lactic-co-glycolic acid) (PLGA) to obtain PLGA/CS composite scaffolds. USCs were then seeded onto these scaffolds, which were subsequently transplanted into nude mice to analyze the osteogenic differentiation of USCs and mineralization of extracellular matrix formed by USCs in vivo. The results showed that CS ion extracts significantly enhanced cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and expression of certain osteoblast-related genes and proteins. In addition, cardamonin, a Wnt/β-catenin signaling inhibitor, reduced the stimulatory effects of CS ion extracts on osteogenic differentiation of USCs, indicating that the observed osteogenic differentiation of USCs induced by CS ion extracts involves Wnt/β-catenin signaling pathway. Furthermore, histological analysis showed that PLGA/CS composite scaffolds significantly enhanced the osteogenic differentiation of USCs in vivo. Taken together, these results suggest the therapeutic potential of combining USCs and PLGA/CS scaffolds in bone tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app