JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Pathogenesis of amoebic encephalitis: Are the amoebae being credited to an 'inside job' done by the host immune response?

Acta Tropica 2015 August
Pathogenic free living amoeba like Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris are known to cause fatal "amoebic meningoencephalitis" by acquiring different route of entries to the brain. The host immune response to these protist pathogens differs from each another, as evidenced by the postmortem gross and microscopic findings from the brains of the affected patients. Cited with the expression of 'brain eating amoeba' when the infection is caused by N. fowleri, this expression is making its way into parasitology journals and books. The impression that it imparts is, as if the brain damage is substantially due to the enzymes and toxins produced by this amoeba. A detailed review of the literature, analysis of archived specimens and with our experimental assays, here we establish that with N. fowleri, Acanthamoeba and Balamuthia spp., the infections result in an extensive brain damage that in fact is substantially caused by the host immune response rather than the amoeba. Due to the comparatively larger sizes of these pathogens and the prior exposure of the amoebal antigen to the human body, the host immune system launches an amplified response that not only breaches the blood brain barrier (BBB), but also becomes the major cause of brain damage in Amoebic meningoencephalitis. It is our understanding that for N. fowleri the host immune response is dominated by acute inflammatory cytokines and that, in cases of Acanthamoeba and Balamuthia spp., it is the type IV hypersensitivity reaction that fundamentally not only contributes to disruption and leakiness of the blood brain barrier (BBB) but also causes the neuronal damage. The further intensification of brain damage is done by toxins and enzymes secreted by the amoeba, which causes the irreversible brain damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app