JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Thymic involution and thymocyte phenotypic alterations induced by murine mammary adenocarcinomas.

Journal of Immunology 1989 December 16
A profound thymic atrophy has been observed in mice bearing large adenocarcinomas of the mammary gland. Only 2 to 5% of thymocytes remained 4 wk after tumor implantation. Although there is a slight decrease in the overall percentages of Thy-1+ cells in tumor bearers, the majority of the remaining cells are of a Thy-1 low phenotype. There was a lower percentage of double positive (CD4+, CD8+) cells, an increase of CD4+ CD8- thymocytes, similar percentages of CD4- CD8+ cells and double negative (CD4- CD8-) thymocytes in tumor-bearing mice. In addition, an increased percentage of CD3 cells could be detected in these animals. These results indicate that proportionally less immature thymocytes are present in the atrophic thymuses of mammary tumor bearers. Enhanced levels of glucocorticoids are known to produce similar effects on the thymus. However, adrenalectomy of mice followed by tumor implantation did not result in reversal of the thymic atrophy. Furthermore, a study of serum corticosterone levels in tumor bearers indicated no significant changes during tumorigenesis. A study of several parameters of bone marrow (BM) populations indicate that there is an increase in cells of the granulocyte-macrophage lineage and a decrease in lymphocytes induced by tumor-derived granulocyte macrophage-CSF. An alteration of prothymocytes in the BM is not the main cause of the thymic atrophy because BM cells from normal and tumor-bearing mice reconstituted irradiated normal mice equally well. There was no preferential recruitment of double positive cells to the spleen as indicated by no significant differences in the levels of T cells of immature phenotype including the CD4+ CD8+ population in the spleens of tumor bearers. Because no major changes were observed in tumor bearers, either at their capacity to repopulate the thymus or at the patterns of subsequent redistribution of thymocytes, it was postulated that the thymic atrophy may be caused by a direct or indirect effect of the tumor or tumor-associated factor(s). Intrathymic injections of tumor cells into young normal recipient mice resulted in a significant reduction of the thymus weight and cellularity. These data suggest that mammary tumors can secrete factor(s) that are capable of severely impairing the normal development of cells of the T cell lineage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app