We have located links that may give you full text access.
Journal Article
Review
Lateral root initiation in Arabidopsis thaliana: a force awakens.
F1000Prime Reports 2015
Osmotically driven turgor pressure of plant cells can be higher than that of a car tire. It puts tremendous forces onto cell walls and drives cell growth and changes in cell shape. This has given rise to unique mechanisms to control organ formation compared to metazoans. The fascinating interplay between forces and local cellular reorganization is still poorly understood. Growth of lateral roots is a prominent example of a developmental process in which mechanical forces between neighboring cells are generated and must be dealt with. Lateral roots initiate from a single cell layer that resides deep within the primary root. On their way out, lateral roots grow through the overlying endodermal, cortical, and epidermal cell layers. It was recently demonstrated that endodermal cells actively accommodate lateral root formation. Interfering genetically with these accommodating responses in the endodermis completely blocks cell proliferation in the pericycle. The lateral root system provides a unique opportunity to elucidate the molecular and cellular mechanisms whereby mechanical forces and intercellular communication regulate spatial accommodation during plant development.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app