Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.

Kernel shape related traits (KSRTs) have been shown to have important influences on grain yield. The previous studies that emphasize kernel length (KL) and kernel width (KW) lack a comprehensive evaluation of characters affecting kernel shape. In this study, materials of the basic generations (B73, Mo17, and B73 × Mo17), 82 intermated B73 × Mo17 (IBM) individuals, and the corresponding triple testcross (TTC) populations were used to evaluate heterosis, investigate correlations, and characterize the quantitative trait loci (QTL) for six KSRTs: KL, KW, length to width ratio (LWR), perimeter length (PL), kernel area (KA), and circularity (CS). The results showed that the mid-parent heterosis (MPH) for most of the KSRTs was moderate. The performance of KL, KW, PL, and KA exhibited significant positive correlation with heterozygosity but their Pearson's R values were low. Among KSRTs, the strongest significant correlation was found between PL and KA with R values was up to 0.964. In addition, KW, PL, KA, and CS were shown to be significant positive correlation with 100-kernel weight (HKW). 28 QTLs were detected for KSRTs in which nine were augmented additive, 13 were augmented dominant, and six were dominance × additive epistatic. The contribution of a single QTL to total phenotypic variation ranged from 2.1% to 32.9%. Furthermore, 19 additive × additive digenic epistatic interactions were detected for all KSRTs with the highest total R2 for KW (78.8%), and nine dominance × dominance digenic epistatic interactions detected for KL, LWR, and CS with the highest total R2 (55.3%). Among significant digenic interactions, most occurred between genomic regions not mapped with main-effect QTLs. These findings display the complexity of the genetic basis for KSRTs and enhance our understanding on heterosis of KSRTs from the quantitative genetic perspective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app