Add like
Add dislike
Add to saved papers

Ginkgo biloba extract promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in a pathway involving Wnt/β-catenin signaling.

Human bone marrow derived mesenchymal stem cells (BM-MSCs) are a novel cell source used in stem cell therapy to treat bone diseases owing to their high potential to differentiate into osteoblasts. Effective induction of osteogenic differentiation from human BM-MSCs is critical to fulfill their therapeutic potential. In this study, Ginkgo biloba extract (GBE), a traditional herbal medicine, was used to stimulate the proliferation and osteogenic differentiation of human BM-MSCs. The present study revealed that GBE improved the proliferation and osteogenesis of human BM-MSCs in a dose-dependent manner in the range 25-75 mg/l, as indicated by alkaline phosphatase (ALP) activity and calcium content. However, such effect was decreased or inhibited at 100mg/l or higher. The dose-dependent improvement in osteogenesis of human BM-MSCs by GBE was further confirmed by the dose-dependent upregulation of marker genes, osteopontin (OPN) and Collagen I. The increased osteoprotegerin (OPG) expression and minimal expression of receptor activator of nuclear factor-κB ligand (RANKL) suggested that GBE also inhibited osteoclastogenesis of human BM-MSCs. Further mechanistic study demonstrated that the transcriptional levels of bone morphogenetic protein 4 (BMP4) and runt-related transcription factor 2 (RUNX2) in the BMP signaling, β-catenin and Cyclin D1 in the Wnt/β-catenin signaling, increased significantly during GBE-promoted osteogenesis. Meanwhile, loss-of-function assay with the signaling inhibitor(s) confirmed that the BMP and Wnt/β-catenin signaling pathways were indispensable during the GBE-promoted osteogenesis, suggesting that GBE improved osteogenesis via upregulation of the BMP and Wnt/β-catenin signaling. The present study proposed GBE to be used to upregulate the osteogenic differentiation of human BM-MSCs for new bone formation in BM-MSC-based cell therapy, which could provide an attractive and promising treatment for bone disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app