Add like
Add dislike
Add to saved papers

Functional morphology of the jaw muscles of two species of imperial pigeons, Ducula aenea nicobarica and Ducula badia insignis.

1. The functional morphological study of the jaw muscles of 2 species of Imperial Pigeons, Ducula aenea nicobarica and Ducula badia insignis has revealed that the structural variations of the bill, osteological and connective tissue elements, and muscles of the jaw apparatus may be correlated to functional diversity in the fruit-eating adaptation of these birds. 2. Both the species of Ducula possess moderately long, thick and stout bill with flexion zones inside, elongated orbital process of the quadrate, stout pterygoid, broad palatine and wide mandibular ramus on either side with increased retroarticular space. Such skeletal modifications together with increased orbital space indicate wide attachment-sites for the muscles, aponeuroses, tendons, and ligaments. 3. The morphology of the quadrato-mandibular joints suggests possible 'coupled kinesis' of the upper jaw, along with depression of the lower jaw. However, in a rhynchokinetic upper jaw as possessed by these birds, the kinesis is just moderate. Hence the gape of the mouth is mainly effected by the depression of the lower jaw, rather less so by the protraction of the upper jaw. 4. Among the functional groups of muscles, M. depressor mandibulae, M. adductor mandibulae externus, M. pseudotemporalis profundus, and M. pterygoideus are especially well developed. The various components of these muscles are provided with stiff as well as wide aponeuroses and tendons (much stronger than those observed in Columba), indicating forceful opening and closure of the beaks for plucking off the fruit, grasping it hard and manipulating it with the help of the beaks before swallowing. 5. The fleshy insertion of the outer slip of M. pseudotemporalis profundus extends ventrally over the dorsolateral surface of the mandible much more than it does in Columba. Further, 2 short and stiff aponeuroses at the rostral insertion of the inner slip of the muscle increase the force of adduction on the mandible. 6. M. adductor mandibulae posterior has not only wider origin and insertion, but also greater mass of fibres than that observed in Columba. 7. M. adductor mandibulae externus and M. pterygoideus form muscle-complexes with the predominance of bipinnate and multipinnate arrangements of fibres and with occasional joining fibres between their components. Such arrangements of fibres indicate sustained force-production, rather than faster movements of the jaw apparatus. 8. M. pterygoideus ventralis lateralis has a well developed 'venter externus' slip which has its thick and fleshy insertion on the outer lateral angular and articular mandible.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app